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On the basis of results from a previous paper, expressions are found for the phase 
velocity and amplification rate of a wave travelling obliquely to the direction of 
flow. This wave comprises the general harmonic component of three-dimensional 
small disturbances, and accordingly a double Fourier integral is introduced to 
represent a bounded disturbance whose initial distribution over the free surface 
may be arbitrarily prescribed. Hence an asymptotic approximation is derived 
for a disturbance which is initially concentrated around a point on the free 
surface. Several distinctive properties of a localized unstable disturbance are 
noted: for instance, it lies mainly within an elliptical region whose area increases 
linearly with time as it moves downstream and which is modulated by long- 
crested waves. An experimental observation of a growing disturbance on an 
unstable film is recorded, and its main features are seen to be in agreement 
with the theory. 

In  so far as linearized perturbation theory remains applicable, the effects 
investigated are common to a wide class of parallel and nearly parallel laminar 
flows. In  the final part of the paper the method used to analyse the instability 
of a film is generalized in order to reveal the connexion between this and other 
problems; this aim is achieved by demonstrating collective properties of the 
complete class of flows in question, but particular reference is made to the example 
of laminary boundary layers and Poiseuille flow between parallel planes. 

1. Introduction 
In an earlier paper concerning the stability of laminar flow down an inclined 

plane (Brooke Benjamin 1957; hereafter this paper will be referred to as I), 
expressions were obtained for the velocity and rate of growth of a small distur- 
bance in the form of an infinitely long-crested sinusoidal wave travelling in the 
direction of flow. The main purpose of the present paper is to show how these 
results can be adapted to predict the properties of a wave directed obliquely to 
the flow and hence, by Fourier integration, can be used to analyse the develop- 
ment of an initially concentrated disturbance. While not adding to the essential 
solution of the stability problem as established in I, this analysis is useful in 
providing an interpretation of what actually happens when a film becomes 
unstable. A photograph is presented in 6 3 which shows a patch of waves on an 
unstable film, and the theory appears to account very well for the outstanding 
features of this disturbance. 
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The investigation in I used the same basic method that occupies most of the 
vast literature on the theory of hydrodynamic stability, its essentials being that 
a two-dimensional wave is assumed to disturb the two-dimensional primary 
flow and that when a stability criterion for such a disturbance is derived from the 
linearized equations of motion, it is tested over all values of the wavelength. 
Justification for considering only two-dimensional disturbancest is given by the 
theorem due to Squire (1933), which shows a three-dimensional wave disturbance 
to have the same properties as a two-dimensional one for a smaller flow velocity, 
i.e. for a smaller Reynolds number; therefore, if the flow is stable until the velo- 
city exceeds a certain value, the neutral wave which marks the limit of stability 
at this critical value must be two-dimensional. Although Squire’s theorem leaves 
no doubt as to the adequacy of two-dimensional theories in proving theoretical 
limits of stability, there remains the important yet sometimes neglected point 
that such theories are generally insufficient to account for the actual event of 
instability when these limits are exceeded. For unless special measures are taken 
to introduce disturbances which are approximately two-dimensional, the first 
manifestation of instability will be of an essentially three-dimensional character 
since initial disturbances will arrive at the unstable region of the flow more or 
less randomly in spatial distribution as well as in time. 

Under slightly supercritical conditions in general, linearized theory indicates 
a range of amplified waves both two- and three-dimensional, yet with a varying 
rate of amplification which is greatest for a certain two-dimensional wave; and so, 
during the time the theory remains applicable, this wave will tend to become 
the predominant component in the Fourier analysis of a developing transient 
disturbance. This property accounts for the occasional successes of two-dimen- 
sional theories in predicting the ‘most prominent’ wave in observed cases of 
instability developing naturally (i.e. without artificial excitation); for instance, 
waves in keeping with the Tollmien-Schlichting theory were observed in the 
experiments of Schaubauer & Skramstad (see Schlichting 1955, ch. 16, § e )  when 
the disturbances in a laminar boundary layer were allowed to arise spontaneously 
from background turbulence which had been reduced to the exceptionally low 
level of 0.03 %; and also in this respect the theory in I was found to check with 
experimental observations made by Binnie (1957). It is seldom the case, however, 
that initial disturbances are so small as to allow enormous amplifications following 
linearized theory, to the extent that the aforementioned selective process 
leaves the manifestation of instability with little trace of its original three- 
dimensional character. Linearized theory may nevertheless often account for a 
preliminary stage of amplification, during which the optimum long-crested wave 
may develop some degree of prominence yet other components still remain signifi- 
cant, particularly those three-dimensional ones neighbouring to the optimum. 

These considerations rather suggest that the natural role of linearized per- 
turbation theories in relation to many problems of hydrodynamic stability- 
particularly ones where non-linear effects are known to arise readily-is to de- 

t More precisely, it is justification for considering only the components with b = 0 in 
a Fourier analysis of an arbitrary small disturbance in terms of wave-numbers a, p respec- 
tive to the direction of flow and the transverse direction. 
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scribe the growth of localized essentially three-dimensional disturbances. As 
the basic element composing the preliminary stages of instability, one may 
usefully imagine an expanding region of perturbed flow which is initiated from a 
fairly tightly concentrated disturbance swept into the unstable part of the 
stream; as the region grows, the optimum long-crested wave will become pro- 
gressively more prominent within it. To reiterate the main point of the present 
argument, we suggest there may often be a phase of significant duration described 
by linearized theory (even long enough to permit asymptotic approximations- 
as introduced in the following analysis) but in which the perturbed region does 
not expand so far as to cease to be an essentially three-dimensional entity- 
say by reaching all lateral boundaries of the flow. The over-all structure of the 
unstable flow, at least of its preliminary stages, may be conceived as an assembly 
of such elements; where they overlap, the optimum wave components need not 
coincide in phase, and it seems possible that phase randomness among the pre- 
dominant spectral component often contributes largely to the disorder observed 
in hot-wire signals detecting the onset of boundary-layer instability. 

The present problem may be proposed as a helpful illustration of this general 
aspect of stability theory, both because the properties of three-dimensional 
transient disturbances in a film can be found approximately without much diffi- 
culty, and also because the effects in question can readily be observed experi- 
mentally. In  both these respects the problem is unusually straightforward; it is, 
for instance, much more so than the corresponding problem for an unstable 
boundary layer. Apparently no complete theory of the growth of small three 
dimensional disturbances in any flow of boundary-layer type has yet been given 
in the literature,? though there have been several investigations of the properties 
of individual three-dimensional waves (see particularly Watson 1960). Nor 
apparently have any directly relevant experimental observations been reported. 
Accordingly, one object of this paper is to emphasize the illustrative value of the 
film problem in this general connexion. The method of analysis applied in $ 2 to 
the main problem will be generalized in $4 in order to show how the properties 
exemplified by a film may prevail in other circumstances; and in particular it will 
be shown how, proceeding from the corresponding theory of two-dimensional 
disturbances, a calculation like that in $ 2  can be completed for plane Poiseuille 
flow and for laminary boundary layers. 

One feature to be demonstrated in Q 4 is in fact absent from the main problem, 
which is thereby made specially simple. This is the dispersive effect arising from 
variations in the velocity of propagation of unstable waves. The velocity is 
constant in the approximate theory applied to the problem of an unstable film. 

2. Analysis 
The problem to be considered is indicated in figure 1.  Liquid with density p, 

viscosity pv and surface tension PI' flows in a uniform film of thickness h down a 
t But Dr 147. Criminale presented a paper on this subject at  the AGARD conference on 

boundary-layer theory in London earlier this year (1960). He has made extensive calculations 
for a particular velocity profile, so dealing comprehensively with an example of the general 
problem covered briefly in $4. 
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plane inclined at an angle 0 to the horizontal. This primary flow is steady and 
laminar, so that the velocity profile is a parabolic arc with its vertex in the free 
surface. The velocity uo of the free surface will be taken as the unit of velocity for 
the purpose of defining dimensionless variables, and h will be taken as the unit 
of length. As shown in figure 1, Cartesian axes (x, y, z )  are taken with x directed 
down the plane parallel to the flow and x directed transversely. Our main object 
is to find the properties of a small disturbance superposed on this flow and initially 
concentrated around a point in the (x,x)-plane; subsequently, if the flow is 
unstable, the disturbance will spread over a progressively wider area of the plane. 

FIQURE 1. Diagram of the undisturbed flow, showing the velocity profile. 

The analysis will be based on the following results which were obtained in I 
for the case of disturbances independent of x .  The displacement of the free sur- 
face from its equilibrium plane was represented by the real part of 

(1) 7 = ~eidz-c t ) ,  

where 6 is a constant representing the initial wave amplitude. There is no need 
here to express the corresponding velocity perturbations; it is sufficient to recall 
that they depend on x and time t in the same way as 7, and that they are functions 
of y which vanish at the solid boundary. The waves observed in practice when the 
conditions of stability are slightly exceeded are extremely long compared with 
the film thickness; accordingly, an approximate theory was developed in I, 
9 5, on the assumption that the dimensionless wave-number a (= 2nh/wave- 
length) is small. On this basis, the real and imaginary parts of c were found to be 

where R = uOh/v is the Reynolds number, and where G = ghcose/u; and 
T = r/hu; are numbers characterizing the effects of, respectively, gravity and 
surface tension on the disturbance. Note that c, and ci as given by ( 2 )  and (3) 
express the respective physical quantities as multiples of uo. The parameters R 
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and G are not independent in this problem, since the primary flow itself con- 
stitutes a balance between viscous forces and the weight of the liquid (see I, § 2): 

2cote m ,  their relationship is in fact 
G = - -  -- 

R 5R’ (4) 

in which R, is the critical value of R defined in the next paragraph. (The notation 
of (3) differs somewhat from the original presentation in I; in particular, the 
Reynolds number in I was based on the mean velocity and so is equivalent to 
3R here.) 

c r k  0 

.3 - 
E G< 8 

unstable 

FIGURE 2. Typical graphs of amplification rate IJ = aci as a function of wave-number a 
according to equation (3). Here IJ is proportional to kaz - a4, where k is a number which is 
positive, zero and negative, respectively, in the unstable, neutral and stable cases. 

The sign of c = aci is a criterion of stability since c t  forms the real part of the 
exponent on the right-hand side of equation (1). Thus equation (3) shows that 
the flow is unstable when G < 8 [i.e. R > R,, where R, = X cot 61, because then 
cr > 0 for a range of small values of a, that is, there are waves whose amplitude 
increases indefinitely with time. Some typical graphs of cr us a are drawn in 
figure 2 in order to show clearly the meaning of this result. Under unstable 
conditions, cr has a positive maximum crm (i.e. there is a maximum rate of ampli- 
fication) a t  a wave-number given by 

8 - G 4( 1 - [R,/R]) , a2 - 8 = _ _ _ ~  
m -  2T 5T ’ ( 5 )  

and the fact that a, is indefinitely small when the stability condition is just ex- 
ceeded confirms the appropriateness of the small-a approximation. When the 
plane is yertical, we have G = 0 for every R and hence we see that the flow is 
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always unstable. However, it was shown in I that for a vertical film cm 1s ' ex- 
tremely small for Reynolds numbers below a certain ' quasi-critical ' range, but 
in this range it suddenly becomes large. This explains the sudden appearance of 
waves in experiments where the Reynolds number is gradually increased from 
small values. For water at normal temperatures the quasi-critical range is near 
R = 6, and the corresponding a, is still quite small. Experiments made by Binnie 
(1957,1959) have substantially confirmed the stability theory summarized here. 

[It is noted incidentally that these results also apply to a film running down the 
under side of an inclinded plane. As in < 8 < n in this case, so that G < 0, 
equation ( 3 )  shows gravity to have a destabilizing effect, as would be expected 
on physical grounds. The film is always unstable for in < 8 6 n, and in the limit 
8 -+ n which makes uo + 0 the present results describe the Taylor instability of 
a stationary liquid layer (cf. I, p. 568).] 

Let us next consider a three-dimensional disturbance for which the displace- 
ment of the free surface may be represented by 

7 = 6exp(i(ax+/Ix) -iact}. (6) 

Mowing complex values of 6 and both positive and negative values of a and /I, 
we see that this expression constitutes the most general Fourier component in 
the (x, 2)-plane; that is, every possible simple-harmonic function of x and z 
is obtainable by linear superposition of the real parts of such expressions. At 
the same time we recognize that the disturbance represented is essentially a long- 
crested wave having a wave-number y = (a2 +/I2)& and propagating at velocity 
(a /y )  c,. in a direction inclined at an angle tan-l (@/a) to the x-axis [i.e. c, is the 
phase velocity in the x-direction, which is of course larger than the velocity in 
the direction of propagation]. 

Expressions for c, and ci in this case can at  once be inferred from ( 2 )  and ( 3 )  
by appeal to the well-known theorem due to Squire (1933), and further explained 
by Yih (1955), which states in effect that the properties of the disturbance 
depend on the primary flow only in respect of its component in the direction of 
propagation. Thus ( 2 )  is to be interpreted as an expression for the wave velocity 
in the oblique direction, with ( a / y )  uo instead of uo taken as the unit of velocity; 
and so, reverting to the original unit, we deduce immediately that the wave 

c,. = 2 (7) 
velocity in the x-direction is 

in this case as before. A similar interpretation holds for ( 3 )  with (a/y)  uo replacing 
u,, in the definitions of R, G and T (e.g. (a /y )  R must be written in place of R if 
R is to retain its previous meaning); and hence we get 

c .  = 3 Y  A % R ( + ~ - G ~ - T ~  7 3  7 5 1  , 

where R, G ,  and T mean the same as before. The logarithmic rate of growthis 
therefore 

( 9 )  c = C X C ~  = +R(+a2 - G(a2 +/I2) - T(a2 +p2))3. 
Figure 3 shows a typical contour map of cr in the (a, /I)-plane. The maxima 

of r~ occur at points +a, along the a-axis, this optimum value of a being, of 
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course, the value given by (5). The contour g = 0 divides the plane into stable and 
unstable regions, since waves for which the point (a, p) lies outside this contour 
are damped (a < 0 )  and waves for which (a, p) lies inside are amplified (a > 0). 

Introducing the moving axis x f  = x - c,t, whose origin travels downstream 
at the constant velocity c, = 2, we now have that the most general harmonic 
component is Sexp {i(ax' + p z )  + g(a, p) t}, 

t 
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FIGURE 3. Contours of constant amplification rate u in the first quadrant of the (a,  B) -  
plane; the figure in the complete plane is symmetrical about both axes. In this example it 
i s  specified that G = + and T = 160; hence urn = R/3000 and a, = 0.05. 

where 6 is independent of x', x and t ,  and where a and p are any pair of positive 
or negative real numbers. Hence disturbances of arbitrarily prescribed form at 
t = 0 can be represented by double Fourier integrals of the type 

7 =Icu --a, Icu -cu S(a,p)exp{i(ax'+px)+at)dadp. (10) 

We are here restricted to initial disturbances ~ ( x ' ,  x ,  0 )  for which there exists a 
Fourier transform S(a, p) in the real variables a and /3 (e.g. we cannot deal with 
functions, such as periodic ones, which do not vanish at  infinite distances from 
the origin), but all cases relevant to the physical problem under consideration are 
clearly admissible. 

Whatever the initial distribution S(a, p) of wave components, it is clear that, 
as t increases, those components for which (r lies very close to the maximum a, 
will eventually predominate over all others; and on this principle an asymptotic 
approximation to (10) may readily be obtained by Laplace's method (Erdklyi 
1956, $2.4). The general result that 7 eventually depends only on &(a,, 0) will 
be confirmed in $4, and for the present we shall fix attention on the following 
example. Taking S(a,P) = const. in (lo), we have a disturbance which at 
t = O+ is highly concentrated in the vicinity of the point x f  = 0, z = 0, and which 
at this and subsequent times is represented by 
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where for simplicity an amplitude factor of unity is taken. While the fact should 
be kept in mind that the asymptotic approximation to be derived is not dependent 
on the special choice of 6, this example serves particularly well to demonstrate 
esssentials. The initially uniform distribution of wave components is the most 
clearly conceivable starting-point for the process of selective amplification; and 
there is the important practical aspect that with such a distribution the asymp- 
totic approximation becomes reliable sooner than with a non-uniform initial 
distribution having its greatest density away from the point of maximum 
amplification. Thus initially concentrated disturbances are the most likely to 
manifest the predicted asymptotic behaviour distinctly in practice, a conclusion 
that was borne out by the experiments described in $3. 

Laplace's method takes the leading terms of the expansion of CT about urn, 
which are 

CT = urn - a(& - - bP2, 
with a = $R(+ - G), b = &R. 
The approximation to (1 1) is therefore 

(13) 

In  (14) the integral with respect to /3 is a standard result, and that with respect 
to a is reducible approximately to a similar integral by changing the lower limit 
to - co, the effect of this change being within the over-all error. The outcome is, 
apart from a numerical factor with no significance here, 

The following features of this result are worth noting separately: 
(1) The amplitude of the disturbance grows according to t--levmt, not ex- 

ponentially as might be expected. [Note that for a two-dimensional localized 
disturbance the corresponding result would be t-&e'ml; in the present case each 
of the two integrals in (14) contributes a factor t-g.] 

(2) The disturbance remains centred at the origin of x'; thus the developing 
wave-pattern is transported downstream at the velocity c, = 2. 

(3) The disturbance is effectively confined within an elliptical region whose 
dimensions grow proportionally to t g ,  i.e. its area increases linearly with time. 

(4) The ratio of the axis of the ellipse in the flow direction to the transverse 
axis is 

The ellipse is therefore very oblong in the transverse direction when the film 
is just unstable, i.e. when R slightly exceeds R,. The outline of the disturbance 
becomes circular ( B  = 1) when R = 2R,; and when R is more than twice its critical 
value, the disturbance becomes elongated in the flow direction. For a vertical 
film, G = 0 and so B = 4 2 .  

[Equation (16) also applies to a film on the under side of an inclined plane 
(i.e. &r < 8 < 71, G < 0 and hence e > 42) ,  provided the inclination is not too far 
from the vertical. When 0 -+ 7r, (16) indicates that B -+ co; but this result is 
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spurious, as readily appears on reconsideration of the expression (9) for (r. For, 
if the film lies beneath a nearly horizontal plane, so that - G  is large yet 
GIT = gh2 cos O/r --f - gh2/r, then the optimum wave is determined primarily by 
the second and third terms on the right-hand side of (9). Hence (T is very nearly 
equal to ( T ~  for a2+P2 = gh2/2r, i.e. on a circle centred at the origin in the 
(a, p)-plane; and though, if the plane is not quite horizontal, absolute maxima 
crm still occur at a = +am, p = 0, they are not distinct enough for the present 
asymptotic approximation to be reliable.] 

Finally, as regards physical applications of the foregoing analysis, the follow- 
ing points need mention: 

(a)  The expressions that were used for c, and ci are accurate only when a and 
p are small, yet the initial disturbance was represented as a synthesis of an in- 
definitely wide range of wave-numbers over which these expressions were taken 
to hold. This step is legitimate, however, as a convenient means to obtaining the 
asymptotic approximation, i.e. our description of the disturbance when it has 
grown large enough to be composed from the optimum part of the wave-number 
spectrum. (Our assumption that CL is small in the optimum range relies, of course, 
on (5 ) . )  Components at large wave-numbers are known to be rapidly damped 
anyway (see I, $4)) and so it is immaterial that they are assigned an incorrect 
though still rapid rate of damping. 

(b) Regarding the accuracy of (15) as an asymptotic approximation, a state- 
ment as to a sufficient magnitude oft is still lacking. By developing the asymp- 
totic expansion of which (15) is the first term, one can see that (15) would cer- 
tainly be a close approximation whenever t is large enough to make (rmt/am 
substantially greater than the major axis of the ellipse. When t is this large, 
(15) becomes accurately applicable whatever the form of the initial disturbance; 
but, a t  least for the case of a concentrated initial disturbance as represented by 
(ll),  it would appear that (15) still describes roughly the main features of the 
wave-pattern when t is much smaller than this. There seems little point in 
attempting to improve the present approximation on the basis of the simple 
formulae taken from I, because the limitations of these formulae in respect of 
the matter (a)  above is probably just as important as the limitations of (15) as 
an approximation to (11) or, as it is more generally (cf. $4)) an approximation to 
(10). 

(c)  A more serious consideration than either of the above is that before the 
asymptotic behaviour according to linearized theory is approximately established, 
a disturbance may grow to a size at which non-linear effects become important. 
The initial disturbance clearly must be quite small for the present results to be 
applicable at some subsequent stage, but it would be very difficult to predict 
the practical limitations in this regard, and the matter is best left to be settled 
by experiment. 

3. An experimental observation 
Figure 4 (plate 1) shows an example of the phenomenon in question, and this 

photograph happily bears out the approximate theory proposed above. It is 
thought desirable to include this isolated observation for its illustrative 
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value, even though a comprehensive experimental check on the predictions 
listed below equation (15) has not yet been made. The experiment that provided 
figure 4 was done in collaboration with Mr W. Troutman. 

In  the experimental arrangement a thin film was formed on an inclined sheet 
of plate glass by allowing water to flow through a gap under a rectangular bar 
spanning the sheet. The pool of water above the gap was supplied by seepage 
through layers of muslin, so that the pool was very little disturbed by the 
incoming flow; and by straining the glass sheet careful adjustments of the gap 
were made in order to produce a film that was approximatelyuniform over afairly 
wide span. The velocity uo of the free surface was measured by timing the pro- 
gress of dust particles in the surface, and then the film thickness h was calculated 
by means of the following formula given by rearrangement of (4) : 

h2 = 2u0 v/g sin 8. (17) 

Hence the Reynolds number R = uohL/v was obtained. This estimate of R was 
found generally to agree closely with the estimate R = 3Q/2v in which Q, the 
volume flow rate per unit span, was measured by collecting and weighing the 
flow. 

The long-crested waves that can be seen near the bottom of figure 4 (plate 1)  
developed spontaneously, presumably as the outcome of small fluctuations in the 
stream which in turn were due to disturbances in the pool of water behind the gap 
or to vibrations picked up by the whole apparatus. The regularity of these 
waves can be attributed to the fact that any disturbance was rapidly transmitted 
over the surface of the pool and so communicated to the whole span of the film. 

At a good distance above the place where the naturally excited waves first 
appeared, localized disturbances were introduced into the film either by touching 
the free surface momentarily with a fine wire or by delivering it a minute puff of 
air through a capillary tube; these methods were equally effective, though the 
first was more easily controlled. The disturbances were made at points about 
2 cm downstream from the opening of the gap; it was unsuitable to make them 
anynearer than this to the beginning of the film since a disturbance was then liable 
to be spread unduly by being transmitted along the meniscus attached to the 
vertical face of the bar. A sequence of very short ripples was seen to radiate 
rapidly from the initial disturbance, but these ripples were damped out within 
a short distance. If, however, the film was unstable, a pattern of much longer 
waves was also seen to develop from the disturbance, increasing progressively 
in area and amplitude as it travelled downstream. 

When the present photograph was taken, the slope 8 was 13.1" and uo was found 
to be 6.35 cmlsec. The temperature of the water was 18.6" C, and hence it was 
estimated that v = 0.0104cm2/sec and I? = 73.0cm3/sec2. With this uo and v, 
(17) gives h = 0.0244 cm, and it follows R = 14.9. The critical Reynolds number 
for this slope is R, = $cot8 = 5.4, and thus it is confirmed that the film was 
unstable. 

The disturbance shown in figure 4 was photographed when it had travelled 
about 25 cm downstream from its point of origin. This patch of waves is seen to 
have an approximately elliptical outline, and the wave crests are seen to be 
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approximately parallel at right angles to the flow direction. The patch is slightly 
oblong in the flow direction, and E may be estimated to be about 1.1 With the 
data given in the last paragraph, the theoretical value of e according to (16) is 
1.13. From the photograph the optimum wavelength may be estimated as 
A, = 2- 1 cm, and the theoretical value found from (5) is A, = 1.85 cm, correspond- 
ing to a, = 0.083; this seems a reasonable agreement (cf. Binnie 1959). It was 
also confirmed, though only roughly, that the waves travelled at about twice 
the velocity of the free surface, and that after a disturbance had developed into 
a distinct pattern such as shown in figure 4, its area grew approximately linearly 
with time. The latter property was most readily checked by observing that the 
extremities of the transverse axis described a parabola as the axis moved down- 
stream at constant speed. 

The stage at  which the theory ceased to apply, owing to the development of 
significant non-linear effects, was indicated by deformations of the wave-pattern 
in the following way. Along each transverse ridge formed by a wave crest, the 
central parts where the amplitude was largest began to travel considerably 
faster than the outlying parts, so that the ridge became progressively more 
convex in the downstream direction. However, it could sometimes be observed 
that even when the waves in the interior of a patch had grown so large as to be 
greatly distorted by the non-linear effects, the lateral outskirts of the patch 
continued to spread in the manner predicted by the linearized theory. 

4. Generalization of the previous analysis with application to unstable 
laminar flows of boundary-layer type 

An advantage of the problem previously considered is tha t  it affords a simple 
illustration of properties common to a wide class of parallel or nearly parallel 
flows, which includes Poiseuille flow between parallel planes and laminar boun- 
dary layers. Accordingly, it  will now be shown how the mathematical arguments 
used in $ 2  may be extended to other examples of hydrodynamic instability 
possessing the distinctive feature that a certain two-dimensional wave distur- 
bance has a maximum rate of growth for given conditions of flow. The general 
method of approach will be explained with particular reference to the important 
cases just mentioned, for which the mechanism of instability depends only on 
fluid inertia and a constant viscosity; the previous example should suffice to 
indicate the procedure when there are other physical factors (e.g. gravity and 
surface tension acting on a free surface, or continuous variations of density or 
viscosity). The properties of a three-dimensional disturbance in plane Poiseuille 
flow or in a boundary layer will not, however, be evaluated explicitly as was done 
for the previous example; the aim here is merely to give a formal demonstration 
of their general character. In  addition to properties already exemplified in $2, 
we have to consider the effects of variations of c, with wave-number. 

The solution to the stability problem for plane Poiseuille flow is now well 
established (Lin 1955, ch. 3), and this may be considered the archetype of the 
various available theoretical results which are adaptable to present treatment. 
The boundary layer formed by incompressible flow over a flat plate presents a 
closely related stability problem, having usually been treated as if the primary 
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flow were parallel (Lin 1955, ch. 5; Schlichting 1955, chs. 1G and 17). Various 
predictions based on this approximation have been confirmed experimentally; 
but we must note with caution that our use here of the approximate theory, 
neglecting boundary-layer growth and the change of Reynolds number in the 
direction of flow, stands in need of special justification. On this basis an analysis 
of the development of a discrete disturbance as it moves downstream remains 
secure only while the distance travelled, as well as the length of the disturbance, 
covers insignificant changes of boundary-layer thickness. Nevertheless, it seems 
reasonable to suppose that the usefulness of the theory could be considerably 
extended by taking the boundary-layer parameters to  vary slowly in the results 
worked out on the assumption of fixed parameters. 

In  the existing analyses of these problems, the equations of motion are linear- 
ized in terms of velocity and stress perturbations in the general form 

v = $)(y;a,R)&@-Ct), (18) 

where a is real. The ‘wave amplitude distributions’ 0 are functions only of the 
co-ordinate y perpendicular to the solid boundaries, i.e. they are indepenent of 
time t and the co-ordinate x in the flow direction; but they depend parametrically 
on a and Reynolds number R. For the velocity perturbation parallel to y, the 
respective function 0 is a solution of the well-known Orr-Sommerfeld equation, 
and for the velocity parallel to 2 the respective 0 is the first derivative of a solution 
(see Lin, ch. 1). There is no need, however, for us to recall the relationships among 
the velocity and stress components; and, to fix ideas regarding the physical mean- 
ing of the subsequent analysis, we can henceforth take $) to refer specifically to the 
velocity parallel to y. 

Consideration of two-dimensional wave disturbances in the form (18) is suffi- 
cient to solve the stability problem, since Squire’s theorem proves that such a 
wave is the one maintained at the ‘critical’ Reynolds number-i.e. at the limit 
of stability. With the boundary conditions, the linearized dynamical equations 
and the continuity equation constitute a characteristic-value problem leading 
to a relationship of the type (see Lin, ch. 3) 

P(a, R, C) = 0. (19) 

Each pair of values a and R thus specifies a value of c, which is generally complex. 
(In other words, the Orr-Sommerfeld equation and the boundary conditions on 
its general solution comprise a system which provides discrete eigenvalues c and 
eigenfunctions G(y; a, R).) 

This relationship is extremely complicated, in contrast to  the simple case dis- 
cussed in $2, and it cannot be solved so as to give c explicitly in terms of general 
values of a and R. The practical solution to the stability problem is instead 
usually presented as a ‘curve of neutral stability’ in the (a, R)-plane, which is 
worked out numerically by putting ci = 0 and eliminating c, between the real 
and imaginary parts of (19) [see Schlichting (1955, pp. 328, 329) for an example]. 
Further contours of ci have been worked out for some problems (see figure 5). 
Though certain approximations can be made, justified by a being fairly small 
yet aR large, the calculations are still very laborious. Even so, and notwith- 
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standing the form of the numerical results, it is implicit in this procedure that 
c is a definite function of a and R. That is, we can write 

c = c,.+~c, = ~ ( a ,  R), (20) 

using bold type to denote the prescribed function, and we know that this function 
may at least be estimated by interpolation on the available contour maps of 
c, and ci in the (a, R)-plane. [Incidentally, it is easily verified that c( -a, R) is 
the complex conjugate of c(a, R), which we denote by e(a, R).] 

log R 

FIGURE 5. Contours of constant ci (zero and positive values) in the (a, R)-plane, with R 
expressed on logarithmic scale. The dashed curve is the locus of the maxima of ci for given 
values of R, and an absolute maximum occurs a t  R = R'; this curve necessarily lies below 
the locus of the maxima of g. 

As the key to the present application of stability theory, Squire's theorem may 
be restated as follows. For a perturbation in the form 

v = O(y) exp{i(ax + pz) - iact), (21) 

c = c(y,R*), (22) 

where z is the co-ordinate perpendicular to (x,y), the result corresponding to 
(20) is 

where y = (a2+P2)) and R* = (air) R [this notation follows Watson (1960)], 
and where c is the same function of the two variables that occurs in the solution 
(20) to the two-dimensional problem. (Note that y takes the same sign as a.) 
Furthermore, the amplitude factor in (21) satisfies a form of the Orr-Sommerfeld 
equation with parameters y, R* instead of a, R; thus O = 6(y; y, R*) according to 
the definition used in (18). 

Figure 5 shows a map of ci in the (a, R)-plane, such as is obtained for plane 
Poiseuille flow on the basis of the two-dimensional theory. There is no need here 
to discuss the differences between this example and similar maps for boundary 
layers with negative, zero or positive pressure gradient; it  seems enough to recog- 
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nize that, despite these differences which generally arise where R is much greater 
than the critical value R,, there is in all cases a distinct range of R above R, to 
which the conclusions explained in the next paragraph definitely apply (because, 
in effect, the different sets of curves all have the same character at the left-hand 
end of the unstable region). This range at least covers the phase of boundary- 
layer instability for which the linearized theory is most likely to be useful. Now, 
the present interest of diagrams like figure 5 is that, because of ( 2 2 ) ,  the values of 
ci for three-dimensional waves in the form ( 2 1 )  can also be found from them. 
Since yR* = aR, these values are found simply by tracing a hyperbola aR = const. 
to the left from the respective point a on the ordinate for the given R. [For ex- 
ample, if we want ci for a = 0.2 and /? = 0.15 at R = 1000, we have y = 0.25, 
R* = 800, and so we find the value of ci at the point (0.25, 800) on the (a,  R)- 
diagram calculated for two-dimensional waves.] 

For /? = 0 a general property illustrated by figure 5 is that, at any given finite 
R greater than R,, ci is positive over a certain finite range of a and has a single 
maximum in this range. It follows that a = aci has a positive maximum, say 
am, and we write a, for the respective value of a; thus am is determined as a 
function of R by satisfying the equation 

a g  
- aa = [ l + a g ] c , ( a , R )  = 0. (23) 

To admit the method of asymptotic approximation used in $ 2 ,  the present case 
must provide the property that, for a given supercritical value of R, a,, is greater 
than any value of a obtained with /? + 0,  i.e. the optimum two-dimensional wave 
is the most unstable for the given R. For confirmation on this point, which is 
actually a rather delicate one having no directly obvious proof, we may refer to 
the work of Watson (1960).  He showed in general that a(a, /?, R )  is greatest for 
a = am, /? = 0 at least when R is given in the range above R, terminated by the 
value at which ci has its absolute maximum (e.g. R‘ in figure 5 ) .  For higher 
Reynolds numbers no definite result can be stated; but in the case of Poiseuille 
flow Watson assessed the available numerical evidence to imply that the most 
unstable wave is a two-dimensional one at all Reynolds numbers above the 
critical. 1- 

t Being based on Squire’s theorem these deductions depend crucially on the assumption 
that the flow is effectively unbounded in z, as also does the paramount deduction that the 
critical Reynolds number is determined by a two-dimensional wave. But it may be noted 
incidentally that the mathematical statement of Squire’s theorem also holds for complex 
values of /3, in which case the present conclusions are invalidated. In  particular, for a 
disturbance with real exponential z-dependence, /3 is purely imaginary and we have y < a 
for 1/31 < cc, which indicates by virtue of (22)  that such a disturbance can be unstable at  
Reynolds numbers below the critical value for two-dimensional waves. Such disturbances 
are clearly possible in the presence of a lateral boundary to the flow; more precisely, 
there can be disturbances which become exponentially decreasing in z outside the extra 
‘boundary layer’ formed in the primary flow. For this reason it may prove impossible 
to avoid some measure of ‘premature ’ instability in experiments simulating plane 
Poiseuille flow; because whatever form of lateral boundaries are used, there can be distur- 
bances between the parallel planes which are to some degree sensitive to the presence of 
these boundaries. 
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Proceeding from (2l) ,  the next step is to introduce a double Fourier integral 
to represent a localized disturbance. As an extension of the method that was 
used in 3 2 ,  we shall here take account of y-variations and so represent a three- 
dimensional disturbance in toto, rather than restricting as before to the distribu- 
tion over a particular (x, 2)-plane. We recognize in advance, however, that this 
extension scarcely adds to what is directly deducible by the original method 
which, if applied again, would still afford a complete description of events in any 
given (x, 2)-plane consequent to arbitrary initial conditions in that plane. The 
following three-dimensional synthesis represents the y-dependence which is 
apparently concomitant with a (x, y)-distribution initially specified in a chosen 
plane, and so it does not add to the degree of arbitrariness available in setting an 
initial-value problem. We shall not attempt to establish whether or not the 
initial distribution in three dimensions might be represented with greater 
generality, i.e. to seek a uniqueness theorem supporting the present method of 
representation. But presumably the method is in fact adequate, particularly as 
disturbances of the type (22) with harmonic dependence on x: and z are apparently 
the only ones possible in the present theoretical model which is unbounded in x: 
and z, and also as the eigenfunctions 0 presumably may form a complete set. 
In  any case it appears that at least every unstable element of any disturbance is 
represented here; and so in this context, where the aim is to derive properties 
due to the class of unstable waves, there would be little point in pursuing the 
mathematical issues relating to generalization of the initial-value problem. 

We accordingly consider 

v(x, Y, 2, t )  = S(a,p)3(y;y, R*)exp{i(az+pz-uc,t) +crt)dadp, (24) 

where &(a, p) is an arbitrary function. If at t = 0 the perturbation v is prescribed 
over a certain plane y = 0, say, and if the Fourier transform of v(x, 0, z, 0 )  is 
g(a, p), then we have that S(a, p) = g(a, P)/3(0;  y,  R*). Hence, when this expres- 
sion for S(a, p) is substituted in the integral, v is determined by (24) for all t > 0. 

In  order to derive an asymptotic approximation to (24) for large t, the ampli- 
fication rate CT has to be expanded as far as quadratic terms in u - u , ~  and /I. 
[For the time being we only consider the maximum at (aw8, 0) ,  leaving the equal 
one at ( - am, 0 )  to be treated later.] The corresponding expansion of the frequency 
o = acr is also needed. Considering further the case of Poiseuille flow or boun- 
dary layers, we shall now show how the required expansions may be deduced 
from w + icr = ac(y, R*), where the function c = c, + ici is in principle known from 
the solution to the respective two-dimensional problem. Using suffix m to refer 
always to the optimum conditions /3 = 0, a = y = am, R* = R, we have 
(a(r/aa), = 0 by definition (cf. ( 2 3 ) ) ;  and we get, using ( 2 3 )  to obtain the second 
ecrualitv, 

" l  

m 



416 T .  Brooke Benjamin 

where p must be a positive constant since G-, is a maximum. The first two equali- 
ties in (25) indicate how p can be evaluated from data such as are plotted in 
figure 5. It is next observed that 

since 

Hence we get 

and 

Here q is positive as an implication of Watson's proof, referred to above, that 
u is greatest for the optimum two-dimensional wave; and (28)  shows how q also 
is deducible from data such as in figure 5. The required approximation to v is 
therefore 

G- = G-m-p(a-am)2-qp2. (29) 

Consider next the frequency w = ac,. In  the same way that (26) leads to (27), 
we get r ~ ) ~  = 0, (as), = 0, 

and so we have 

to the second order in a - am and p. Here w, = am(c,Jm, and the three derivatives 
can be found from the solution to the two-dimensional problem, just as was shown 
above for the derivatives of CT. 

(31) 
We now introduce x = 2- Umt, 

where 

is the group velocity of the wave of maximum amplification, and we also write 

Hence, when the approximation (30) is substituted, the imaginary part of the 
exponent in (24) can be arranged in the form 

am(X + Vt)  f [x f p Z  f KC2t f ,Up2t. (33) 



Plutr 1 

FIGURE 4. Photograph showing an elliptical patch of waves developing on an unstablc 
film of water. The graticule which can be seen here consisted of 1 in. sqiiares and was 
attached t o  the tinder side of the sheet of glass down which the film was running. 
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In  deriving an asymptotic approximation to (24) by Laplace's method, (29) 
and (33) are the expansions to second order required to account for the maxi- 
mum of r at (a,,O). The expansions appropriate to the other maximum at 
( -am, 0 )  are immediately deducible from (29) and (33) on recognition of the 
fact, noted below ( Z O ) ,  that c( -7, R*) = E(y, R*). In terms of the new variables 
gl = - (a + a,), p' = - p, the form of the expansion of (T is seen to be unchanged 
from (29), while the form of the expansion of w is seen to be the same as (33) 
except for an over-all change of sign. Thus, for the two maxima, the respective 
approximations to the exponential factor in (24) are complex conjugates. In  
keeping with Laplace's method, the areas of integration of the respective 
approximations may each be allowed to cover the whole plane; and the method 
also permits the factor g(a, p) B(y; y, R*)/8(0; y, R*) in the integrand to be 
evaluated at the maxima (where y = _+ a,, R* = R) and hence taken outside 
the integral signs. Use can also be made of the fact that 8(y; -am, R) is the con- 
jugate of O(y; a,, R), which is easily verified from the Orr-Sommerfeld equation. 
The approximation to (24) is therefore expressible in the form 

and 7 is the conjugate of I .  
The exponential factor and the integrals in (35) provide the most interesting 

features of this result, and we may conveniently explain the other features and 
dismiss them here before performing the integrations. Two of the properties 
demonstrated might have been expected from the start. First, it is seen that 
whatever the initial distribution of wave components in the (a, p)-plane, the 
disturbance depends asymptotically only on the densities of the distribution at 
the points ( _+ a,, 0) ,  i.e. on the measure of the optimum two-dimensional waves 
in a Fourier analysis of the initial disturbance. Secondly, the y-distribution of 
the developing disturbance is shown to become asymptotically the same as that 
of the optimum wave. Both these properties have been established by the simp- 
lest detail of Laplace's general method, namely that some factors in the integrand 
which are independent of the large parameter t can be evaluated at the maxima 
of the real exponent r t ;  the principle is, of course, that the (a, p)-variations of 
these factors are insignificant in comparison with variations of the real exponen- 
tial. That the 8 factors can be so treated, whereas variations in the x- and z- 
dependent factors must be allowed for, derives from the nature of the function 8, 
or more specifically from the boundary conditions which it must satisfy. For 
whereas the ultimate range of an unstable disturbance has no prescribed limit 
in x or x ,  which accords with x and y entering the integrand in harmonic functions, 
the range of variation in y is essentially limited. Even for a boundary layer where 
v is required to vanish on only one plane, the condition that 8 remain bounded for 
y -+ co requires that 8 = e-yy outside the layer (see, for instance, Schlichting 
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1955, p. 320). Thus changes in y-structure cannot continue indefinitely, such as 
can on the other hand in the ‘opening out’ of a wave train; and it is easy to see 
physically that the y-structure ‘fixes’ when the wave components near the opti- 
mum become predominant [e.g. ZI N e-amY x (function of x, x ,  t )  outside a boundary 
layer]. 

Evaluation of the integrals in (35) is straightforward. Leaving aside the 
features explained in the last paragraph, and also dropping a numerical factor 
which is immaterial here, we can state the general result as follows. On any plane 
inside the flow and parallel to the boundaries, the distribution of the disturbance 
is given asymptotically by some linear combination of the real and imaginary 
parts of 

where p + i K  P + i P  A + i B  = p 2 + K 2 ,  -- C+iD = - 
q2+p2‘ (37) 

The point needing emphasis here is that a result of this form is applicable to 
every problem of the general class in question. Special attention has been paid 
to Poiseuille flow and boundary layers because of their importance and also to 
give an example of how the coefficients in (36) may be evaluated; but it is implied 
that this set of coefficients is a definite attribute of every physical system which 
can be unstable in the general manner under consideration. (For a film of liquid 
flowing under gravity, we recall from $ 2  that p = a, q = b, K = 0,  ,u = 0; also 
V = 0 so that X = x’.) 

The following is a list of the properties expressed by this result and stands as a 
generalization of the set of properties noted below (15) in $2: 

(1) The over-all amplitude of the disturbance increases as t-l e‘mi. 
(2) The disturbance is centred at the origin of (X,x) since the factor 

exp { - (AX2+ Cz2)/4t} describes a ‘Gaussian’ distribution of amplitude along 
any radius from the origin. The disturbance is therefore effectively confined with- 
in an expanding elliptical region outlined by 

(AX2 + Cz2)/4t = const., say about 3. 

The axes of the ellipse both increase as t 4 ,  and consequently its area increases 
linearly with t. 

(There is apparently no general conclusion to be drawn as regards the relative 
magnitudes of A and C and hence the eccentricity of the ellipse. We recall from 
$2 that when a film is made marginally unstable, then CIA = a/b = 0 and so the 
ellipse is greatly elongated in the z-direction; but this feature is peculiar to the 
problem and does not arise in general.) 

(3) Since x = U,t at X = 0,  the disturbance is carried downstream at the group 
velocity Urn associated with the two-dimensional wave of maximum amplification. 

(4) The (X,z)-distribution of the disturbance is modulated by this wave 
travelling at velocity - V relative to X;  i.e. the wave travels downstream at its 
phase velocity ( c ? ) ~  = Urn- V ,  but is cancelled everywhere except in the ellip- 
tical patch which advances through the wave train at relative velocity V .  



Development of three-dimensional disturbances 419 

(5) Another effect of dispersion due to variable c, is represented by the factor 
exp{ - i ( B X 2  + Dz2)/4t). The disturbance is thus modulated by undulations whose 
spacing rapidly decreases with distance from the centre; however, they will only 
appear as a prominent feature of the disturbance if B and D are considerably 
greater than A and C respectively. For these undulations the contours of constant 
phase are ellipses whose areas increase linearly with time, and the pattern formed 
by superposition of them upon the Gaussian distribution considered in (2) above 
is similar at  all times. 

Finally, the points labelled ( 6 )  and (c) at the end of 5.2 may be recognized to 
apply generally to the foregoing results. The matter (c) regarding limitations on 
the theory due to non-linear effects particularly deserves re-emphasis, since these 
limitations are liable to be more severe for other problems than for the one 
investigated in 9 2. For instance, disturbances in unstable boundary layers are 
known to develop dependence on non-linear interactions very readily unless 
under conditions where their initial magnitude is unusually small, and the extent 
to which the properties described here may be actually manifested remains in 
doubt in the absence of any direct evidence. Nevertheless, the reasons given in 
5 1 seem definitely to suggest that present ideas may often be relevant to a certain 
incipient phase of instability, in plane Poiseuille flow and boundary layers as 
well as the incontestable example demonstrated in 552 and 3, and these ideas 
may generally provide a rather more realistic account of events in this phase than 
the basic two-dimensional form of stability theory. 
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